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74th ESGI 1 INTRODUCTION

Executive Summary: In order to have a successful shopping experience in a supermarket,

customers need to be able to efficiently find the articles they are looking for and to quickly

check-out of the store. In order to serve their customers (checkout and pay) in a cost-effective

way, retailers need to configure and size their check-outs solutions by defining: the number of

checkout posts; type of checkout (traditional or and self-service); how many check-outs of each

type. The main goal is to analyze the ideal check-out configuration for the desired service level.

Motivate by the evidence that customers have preference for certain checkout counters, the focus

is on the particular case of Vasco da Gama store.

1 Introduction

It is an almost consensual fact that supermarkets are of prominent importance in everyone’s

day life. Supermarkets have evolved in such a way that, nowday’s, they constitute the last link

in the chain of events starting at the production of an item and ending with the item being

acquired by its final consumer. For most of us consumers they are the preferred place to buy

groceries (food, beverages) and household items, daily or weekly, whether at our hometown or

elsewhere.

Competition in the retail industry has never been greater. The supermarket industry is faced

with the challenge of maintaining market share and profits while attempting new concepts and

store formats in an effort to differentiate themselves from other types of retailers. In today’s

world, supermarkets are essentially retail stores trading in a highly competitive marketplace,

where nearby competitors are often located within a walking distance of one another. New

concepts and store formats, either emanating from technological developments or from a better

understanding of the consumer needs or trends, arise continuously in an effort to differentiate

stores among competitors.

Retailers are full aware that consistent failure to provide what a particular customer wants or

what a particular customer may find elsewhere will drive this customer to a different supermarket

next door, eventually creating new habits that will be hard to change (see e.g. [3]). The facts
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consistently indicate that today’s customers are “super”-demanding and the experience of many

retailers is that customers want it all and they want it now!.

On the other hand, there is the recognition that positive customer experiences also have a pos-

itive effect upon consumers habits, motives and attitudes, which might carry over to subsequent

shopping decisions and behavior (like repeated purchase behavior and positive word-of-mouth

communication). Hence, supermarket retail companies thrive continuously in order to impress

their customers. A trip to a supermarket is looked upon as an outing that involves much more

than just buying groceries.

The perception of an efficient service checkout has always played a key role to establishing

competitive edges in attracting customers. Fast check-out is supposed to add memorable and

satisfactory value to a purchasing experience and to boost customer satisfaction. On the opposite

end, long waiting time for checkout may cause customers discomfort and bewilderment. A

consumer dissatisfied with long waiting time may not give up its purchase at that time, but

eventually will not return because of the perceived negative image.

Leading retail companies, like SONAE, acknowledge that deliverance of an excellent service

is a winning strategy. Excellence in service is a profit strategy since it entails more customers

purchasing, new customers arriving, and a smaller number of lost customers. Even upon entering

a store, customers can perceive how much time they will spend in the store front by a single

glance at the checkout traffic. This perception of long queues can perhaps be mitigated by adding

sets of self-checkout counters with one communal queue. But there is a trade-off here. On the

other hand, there are customers that dislike new technologies, the do-it-yourself discipline, and

identify better with the traditional personal contact at checkout service. Therefore, the proper

ratio of conventional parallel checkout servers and self-checkout counters concours to the key

formula for maintaining the customer’s perception at an excellent service level.

The quest to improve service in supermarkets, in terms of reducing the average waiting time

in queue or the average number of customers in queue, is far from being a recent problem.

Since the seminal work of Erlang in 1909, it has been recognized that queueing models

can be useful in making design, and operating, decisions in service systems. The enormous

body of queueing research produced since Erlang has been employed with some success by
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professional systems analysts. Applications of queueing models of service systems related to the

problems described here include: designing toll booths in bridges [4]; designing trunk lines for

tele-marketing [1]; designing lanes for aircraft landing [9]; setting the number of doctors needed

at an hospital emergency department [5], setting the number of representatives of an inbound

call center [6].

However, to the best of our knowledge, there is not much literature on the application of the

theory of queueing systems to the checkout area design of supermarkets. The reason would be

that the problem had been uninteresting so far and it has gained a renovated scientific interest

due to the increased complexity on the different types of checkout counters.

Planning a checkout area poses indeed a difficult problem, mainly because we cannot reduce

queues by increasing the number of checkout positions in a straightforward manner. If by the

customers viewpoint, a long waiting time to checkout connects with degrade of the quality of

service, from the standpoint of retail management it is expensive to keep an underutilized server

because every portion of space in the store front end is a real asset.

The main goal of this work is to assist SONAE in discerning a course of action that may

actually lead to improvement in their customers’ experiences at the checkout area. This is

essentially an exploratory study which comprises an attempt to identify and to measure stylized

features of Vasco da Gama customers when checking out.

When the company executives presented the case to us they made the following claims based

on empirical evidence:

• A considerable number of customers checkout from the store with few items. On average

50% of clients check out from the store with 5 items or less.

• Customers carrying few items tend to prefer self-service counters. Vasco da Gama’s group

of four self-service counters, which represent 10% of whole set of counters, serve 19% of

the customers carrying 5 items or less. Colombo’s two-group of four self-service counters,

which represent 13% of whole set of counters, serve 32% of the customers carrying 5 items

or less.

• Customers tend to spend more time checking out in self-service stations than in traditional
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checkout counters. More concretely, a customer carrying 5 items takes 50% more time in

a self-service counter; a customer carrying 10 items takes 300% more time in a self-service

counter; a customer carrying 13 items takes 400% more time in a self-service counter.

SONAE keeps data records of all scanning times for each individual item, at every checkout

counter. The items (or articles) belong to certain categories of interest which are displayed in

connection with the designated article, both in traditional and self-service checkouts. Compre-

hensive data-sets regarding scanning-service times were disclosed by SONAE for the purpose

of this study. But these do not include records about payment-service time nor the payment

method used by the customer (for instance, cash or card). Moreover, in the absence of in-

formation about customers behavior when in queue, we find this huge batch of data rather

sparse eventually, at the enrollment of modeling Vasco da Gama store front which is typically a

queueing system in the fair probabilistic sense.

We shall closely follow the recent work by Horst (2009) [8] which aim at discussing both

theoretical and practical consequences of the introduction of self-checkout counters. Therein,

comparative performance of self-checkout supermarkets against traditional supermarkets has

been undertaken in terms of the expected sojourn time in the system and also by estimating

the probability that more than n customers are in the queue. In Section 2 we introduce the

mathematical contours of this study. We also present a slight modification to the work by Horst

(2009) [8], that allows unequal preferences by the customers, tailored for SONAE’s problem.

For a comprehensive exposition on the probabilistic theory underpinning our work, the queueing

theory, we refer the reader to [7]. Section 3 encloses analysis under SONAE’s framework and

results in terms of the most widely-used performance measures. Finally, in Section 4 we draw

some concluding remarks and recommendations for subsequent work.

2 Model description

Queuing systems are easily recognized in any organized structure with customers arriving, cus-

tomers waiting their turn for service, customers being served, and customers departing. Queuing

systems are thus the natural probabilistic tool to model the customer flow behavior at supermar-
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ket checkout areas. Six basic components suffice to characterize completely a queueing system:

1. arrival pattern (or input pattern) of customers, characterized in view of the customer

interarrival-time distribution, i.e., the duration of time intervals times between consecutive

arrivals. These are usually assumed independent and identically distributed (positive)

random variables;

2. service pattern, usually referred by the distribution of the service time taken by a customer,

i.e., the distribution underlying the amount of time each costumer requires to be served.

Likewise, service times are assumed independent and identically distributed (positive)

random variables. Moreover, any random sequence of inter-arrival times is supposedly

independent of the associated sequence of service times. Any interaction between customer

and server only takes place during the service itself;

3. number of servers (or service stages), assumed to be identical and being able to serve only

one customer at a time and being idle if and only if there are no customers waiting for

service;

4. system capacity or the amount of buffer space in the queue, measured in terms of the

number of customers allowed to enter the system;

5. queue discipline, referring to the manner in which the customers are taken from the queue

to be served when a queue has formed. Departures from the waiting line to the server are

usually assumed to be First In, First Out (FIFO) or First Come, First Served (FCFS),

i.e., the service of a customer is initiated by order of arrival to the queue, rather than last

in first out, or in random order;

6. number of service channels. Single-station queueing systems have only one queue line for

all customers and one or several servers, so that, whenever a server is free the customer in

the front of the queue goes directly to that server and start being served. Such systems

are called (single channel or single line) multi-server queuing systems. Nevertheless, in

traditional supermarket stores, generally each server has his (or her) own private queue in
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front of the server. In this case we say that we have a multi-queue system, i.e., a collection

of independent parallel single channel queues, either of single or multi-server type.

Each one of these basic characteristics are specifically addressed below, together with simplifying

assumptions pertaining to SONAE’s specific problem.

Another important characteristic to describe a queuing system is the customer acceptance.

Customers acceptance discipline in the queue waiting line configuration may vary from patient,

to balk (view the line, then leave), renege (join the line, then leave), jockey (join the line, then

move to another line when you think it is moving faster), or collude (give your groceries to

another customer). For computational reasons, we follow the usual assumption and further con-

sider that SONAE’s customers are patient, i.e., on arriving at a queueing system a customer stays

in the system until being served, no matter how much longer the customer has to wait for service.

In the sequel, we shall use Kendall’s notation (A/B/c/d) to denote a queueing system char-

acterized by quantities 1. up to 4. Hence, the letters A, B, c and d encapsulate the distribution

of interarrival-times, distribution of the service time, the number of servers and system capacity,

respectively. Since we assuming there are no constraints on the number of customers in the

system, i.e., d = ∞, on the matter of simplicity we shall drop the d-component from the nota-

tion. Henceforth, we use the notation (A/B/c) for a SONAE queueing system. For the service

discipline, stated in point 5. above, we follow the usual rule at supermarket checkouts counters

and consider departures from the queue are governed by the First Come First Served (FCFS)

service discipline. We shall call on these assumptions, which we regard as mild yet reasonable

restrictions, in order to develop our results. For a comprehensive exposition on the queuing

theory underpinning our work we refer the reader to [7].

In the current framework, the arrival process, i.e., the distribution function underlying the

physical process that is generating the input pattern is unknown. Moreover, usual measures of

central tendency such as the average amount of arrivals to the queue per unit of time (average

arrival rate) or the average time between successive arrivals (average inter-arrival time) cannot be

adequately estimated, since SONAE does not keep record of time instants at which a customers
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enters either the store or a (self-)checkout queues. To circumvent this problem, we shall assume

the arrivals originate from a large population of independent potential customers and that

customers arrive individually, meaning that the arrival of one customer is independent of, or

does not impact, the arrival of another costumer.

Now, let T be the random time between successive arrivals of customers. The probability

that two or more customers arrive at the same instant is assumed negligible. Completely random

arrivals are often addressed by means of a Poisson-exponential arrival process. Our framework

does not escape the Poisson process’ grasp and the random variable T thus follows an exponential

distribution with mean 1/λ > 0. Probability theory ascertains that the average time between

arrivals is 1/λ, if the average rate of customers entering the queueing system is λ (cf. [7], p.16).

Intuitively one would expect a similar claim.

A good advantage in considering a Poisson process for the arrival process stems from the

fact that the random split of a Poisson originates independent and yet again Poisson processes.

In fact, what really matters is not the process of customer arrivals to the supermarket but the

actual customer arrival process at each individual checkout counter. The latter justifies the focus

on what happens at the store front, namely at the checkout counters, instead of looking back

at the arrival process to the supermarket. Accordingly, we let k denote the number of checkout

counters in the checkout area and consider that each arbitrary arrival customer chooses counter

i with probability p∗i defined as

p?i := P{costumer chooses counter i}, (1)

with p?i ≤ 0 for all i = 1, 2, . . . , k and
∑k

i=1 p
?
i = 1. A positive value p?i is assigned to the

checkout position i if this system is operative, otherwise it is set at p?i = 0. Therefore, the

original Poisson arrival stream, with arrival rate λ > 0, is randomly split between k independent

Poisson processes with intensities λi := p?i λ, corresponding to the arrival streams to the queue in

the k-th parallel checkout systems. This results in k single-channel Poisson arrival queues with

arrival rates λ1, λ2, . . . , λk, each one of those being formed in front of each checkout counter.

In the particular case of Vasco da Gama store, k is equal to 37 because there are 36 traditional

checkouts (i.e., 36 single servers) in this supermarket and one self-checkout service that encloses
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a multi-server system with 4 servers. Figure 1 summarizes a decomposition of the arrival process

in Vasco da Gama store front.

Arrivals

Queue

.

.
.
.
.

.

.

.

Checkout 
Servers

Figure 1: Scheme of the store front: decomposition of the arrival process.

Denoting by µ the average rate of serving customers, a measure of traffic congestion for a

c-server system is the so-called traffic intensity given by ρ = λ/(c µ). When ρ > 1 the average

number of arrivals into the system exceeds the maximum average service rate of the system,

and we would expect that after some time the queue builds in, unless, at any particular instant,

customers are not allowed to join. In case ρ < 0.8, we expect that the system does not present

congestion. In such cases the system has a very small number of customers in queue and small

number of customer waiting time in queue. These random quantities start to increase quite

rapidly when the traffic intensity ρ exceeds 0.9, approaching an undesirable magnitude when

the queue gets critically loaded (with ρ near 1) and bursting for ρ > 1, due to the fact that, on

average, the number of arrivals into the system exceeds the aggregate service potential of the

system. It is also known that, for ρ < 1, the queue length is typically larger when there is more
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variability in the interarrivals and/or in the service time distributions.

A value of ρ greater than one would prevent the system from settling down, hence a steady

state regime is never attainable in this case. In order to attain steady-state results, ρ must be less

than one. Steady-state results are important because they account for probabilistic statements

or characteristics such as mean and variance that are valid at any particular instant we decide

to look at the system. Figure 2 serves a mere illustrative purpose in this respect. It concerns

a preliminary analysis of how the traffic intensity ρ changes, when only traditional checkouts

are operative (c = 1). In order to have a rough idea about the total number of traditional

checkouts (parallel servers) required to guarantee a steady-state solution, Figure 2 displays how

the traffic intensity ρ varies as a function of the number k of traditional operative checkouts,

given the arrival rates λ = 100, 200, 250, 500, 750 customers per hour. The mean service time

per customer considered here is 1/µ = 110.6 seconds. This value was estimated from pooling all

average service times from the traditional checkout counters operative between 10:00 a.m. and

12:00 a.m. on a busy Sunday at Vasco da Gama store. Following ideas from Horst (2009) [8], in

this first approach in which we have consider that no checkout counter is preferred over another

(i.e., p?i = 1/k, all i = 1, 2, . . . , k), we can observe that, with k = 20 traditional checkouts at

disposal, the traffic intensity is less than 1 even if customers keep pouring in at the rate of 500

per hour. Although the 20 operative counters keep the system away from saturation, a value of

ρ around 0.75 most likely entails long queues which, of course, is not at all desirable.

We should stress that, although from SONAE’s records we could not estimate how the

customer arrival process split into the several checkout queues, we conclude that customers

clearly have preferences. This can be inferred from Figure 3 which displays the percentage of

transactions at each traditional checkout counter. In fact, although the depicted percentages

of transactions cannot be directly translated as the percentage of customers going to a cer-

tain checkout, the most striking feature is that the highest percentages rise on those checkout

positions that are closer to the Oriente railway station, which in turn, marks the direction of

the nearest car parking lots. Checkout positions 7 up to 10 refer to self-service counters and

therefore were not represented here.
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0
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Figure 2: Traffic intensity as a function of the number of traditional checkout counters. Each line series
corresponds to the designated average number of clients entering in the system per hour.

As such, we need to assign different probabilities to split costumers between the different

checkout counters, not making much sense to consider the uniform split p?i = 1/k, all i =

1, 2, . . . , k as above. Since we are dealing with a mixed scenario (the store front encompasses

both traditional and self-checkout servers), it would be rather unrealistic to say that every

counter has the same probability of being chosen by an arriving customer. Hence the novelty

in this work: the probability pi of a customer approaching counter i is not the same for every

counter, i.e., p?i 6= 1/k for at least one i = 1, 2, . . . , k. Now, how to find these distinct probabilities

p∗i is another matter, surely of practical importance. The probabilities p∗i could not be estimated

on the basis of the available but that we shall defer this matter to the next section.

With respect to generalizing the service pattern, we note that the amount of time a customer

spends in the server or checkout counter strongly depends on the method of payment, namely

cash or card (or other that we shall no take into consideration). Only by itself, the payment

factor can have huge impact upon the probabilistic statements underlying our analysis, the
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Railway Entrance

Figure 3: Percentage of transactions at each checkout counter of Vasco da Gama store.

obvious one being that we cannot assume service times to be exponentially distributed any

more. Nevertheless, on account of simplicity we shall assume the time a customer spends paying

cash and the time taken in a card payment are both exponentially distributed with expected

value βcs and βcr, respectively. Whence, if the probability of a customer using cash payment

is q, then the service time S is a random variable with hyper-exponential distribution (H2).

Corresponding power-moments of order r = 1, 2 are given by

E[Sr] = q rβrcs + (1− q) rβrcr = q
r

µrcs
+ (1− q) r

µrcr
. (2)

This simple fact carries mathematical problems of computational nature which we recover in

the next Section.

Due to their configuration, traditional checkout systems and self-service checkout counter

systems are modeled by appropriate (M/G/1) and (M/G/4) queues, respectively. The notation

M stands for the Poisson arrival process whereas the letter G stands for General (independent)

service times, following an hyper-exponential distribution in this particular case.
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3 Performance measures

We begin by recalling the assumption that the queuing system arises a steady-state scenario,

i.e., that the traffic intensity ρ is less than one for every checkout system. This way we can

proceed with the use of general queuing theory in order to study more thoroughly the behavior

of the two types of checkout systems: traditional and self-service checkouts. Just by looking

at the appropriate models, it should be possible to mimic the real behavior of the system and

ascertain a certain desirable quality of service for the system. With the proper models, finding

an appropriate balance between the cost of service and the amount of waiting is also tangible,

under the umbrella of queueing theory.

In the previous section we have showed that each checkout counter is adequately described

by a (M/G/c) queueing system. In this section, we shall concentrate on the assessment of per-

formance measures pertaining to such queueing systems. Performance measures are, in general,

evaluated trough the computation of important system characteristics such as the number of

customers in the system at an arbitrary time, L; the number of customers waiting for service at

an arbitrary time (i.e., the queue length), Lq; the customer waiting time in queue (time elapsed

since the arrival of a customer until it enters service), Wq; the customer waiting time in system

(time elapsed since the arrival of a customer until it lives the system), W .

Performance measure involving waiting time distributions are particularly related with the

view point of customers (in assessing customer satisfaction), whereas those regarding distribu-

tions of occupancy are more related with the standpoint of resource management.

Further on we shall take into account that, by virtue of the Law of Large Numbers (cf.

[2]), performance measures are well approximated by sample means or averages taken upon

the data available. Hence, even if the underlying theoretical distributions are unknown or do

not possess closed-functional forms, expected-value measures offer a valid and fruitful way of

assessing performance of the queueing system. Therefore, it is often satisfactory to provide a

mean value performance analysis, in which case we are usually interested in obtaining:

• the expected number of customers in the system, E[L];

• the expected queue size, E[Lq];
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• the expected waiting time in queue, E[Wq];

• the expected waiting time system, E[W ].

These quantities relate each other in such a way that we know them all once we compute

the expected waiting time in queue, E[Wq]. More concretely, the following equality holds:

E[L] = E[Lq] + E[number of busy servers] = E[Lq] + cρ.

In addition, the celebrated Little’s law ensures that

E[Lq] = λE[Wq] and E[L] = λE[W ].

Before moving on to mean value issues, we note that, if we let L(t) denote the total number of

customers in the system at time t ≥ 0, then the probability

pn(t) := P{L(t) = n}, n = 0, 1, 2, . . . .

remains constant for any arbitrary time point t after a steady-state is reached. Whence, after a

steady-state is reached, the latter rephrases as

pn := P (L = n), n = 0, 1, 2, . . . .

For the particular case of a (M/M/c) system, i.e., a queueing systems with exponential

service times, pn possesses a well-known closed-form expressions (see, e.g. [7], Chapter 2). How-

ever, we are now dealing with a general service time G which renders more complex calculations

than the exponential service times and no close-form solutions are actually known. The main

problem in working with (M/G/c) systems arises from the fact that the number of customers in

the system L(t) does not constitute a Markov process (usually inherited by the lack of memory

of the exponential distribution; see [7], Section 1.8 for details). The probability per time unit

for a departure of a customer now depends also on the time the customer in service has already

spent in the service and this information is not contained in the random variable L(t). Again,
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assuming the k queueing systems, the two major (steady-state) expected-value measures,

E[L(i)] =

∞∑
n=0

n pn,

E[L(i)
q ] =

∞∑
n=c(i)

(n− c(i)) pn,

with c(i) = 1 if i ≤ k1 and c(i) = 4 if k1 < i ≤ k1 + k2 =: k, require a different strategy of

calculation (since they depend on pn). Section 5.1.1 of [7] expounds two possible derivations of

these measures pertaining to (M/G/1) systems.

The first derivation hinges on the arrival times and the PASTA property (Poisson Arrivals

See Time Averages). This property essentially states that the steady-state distribution of the

number of customers in the system seen by arriving customers, say (πn)n∈N, is just the steady-

state distribution of the number of customers in the system,here denoted by (pn)n∈N. As a

consequence, the average number of customers in queue as seen by an arriving customer is the

same as the time-average number of customers in queue.

Moreover, for an arriving customer it only matters the remaining service time of the customer

being served and not his/her total service time. Whence,

E[Wq] = E[Lq]E[S] + P{server busy}E[residual service time | server busy].

Due their to good properties, there exist exact results to compute the steady-state average

waiting time in queue of (M/M/c(i)) and (M/G/1) queueing systems with traffic intensity

ρi = λi/µ, where λi = λ p?i and p?i as defined in (1) for i = 1, 2, . . . , k. In fact,

E[W (M/M/c(i))
q ] =

(
c(i)ρi

)c(i)
c(i)! c(i)µ (1− ρi)2

c(i)−1∑
j=0

(
c(i)ρi

)j
j!

+

(
c(i)ρi

)c(i)
c(i)!(1− ρi)

−1 , i = 1, 2, . . . , k,

There are no closed form expressions to compute E(W
(M/G/c(i))
q ) like the above. But we may

resort to approximations proposed in the literature such as, e.g., Allen-Cunneen approximation
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(cf. [10], p. 123):

E[W (M/G/c(i))
q ] =

(
1 + τ2s

2

)
E[W (M/M/c(i))

q ],

with τs = σS/E[S] denoting the coefficient of variation the service time distribution. In the

particular case of c(i) = 1, all i, the above gives rise to the equality:

E[W (M/G/1)
q ] =

λiE[S2]

2(1− ρi)
, i = 1, 2, . . . , k,

hence the exact result for the steady-state average waiting time in queue of (M/G/1).

As a consequence, for the (M/G/1) system with arrival rate λ p?i and general hyper-exponential

distribution considered, for which E[Sr] is as defined in (2), for r = 1, 2, it then follows that the

expected queue size and the expected sojourn time becomes

E[W (i)
q ] =

λ p?i E[S2]

2
(
1− λ p?iE[S]

) ,
E[L(i)

q ] =
(λ p?i )

2E[S2]

2
(
1− λ p?iE[S]

)
E[W (i)] =

λ p?iE[S2]

2
(
1− λ p?iE[S]

) + E[S],

E[L(i)] =
(λ p?i )

2E[S2]

2
(
1− λ p?iE[S]

) + λ p?iE[S],

for i = 1, 2, . . . , k1, known as the “Pollaczeck-Khintchine” formulae.

The second derivation we have announced stems from analyzing the queue at departure

points, which gives rise to a discrete-time Markov chain. The latter enables not only to derive

identical formula for the expected system size E[L] to the one presented before, but also steady-

state system-size probabilities (πn)n∈N which, due to PASTA property, turn out to be analogues

to the steady-state probabilities (pn)n∈N above.

This steady-state probabilities, along with the steady-state distribution of the waiting time

in queue, are relevant to compute the the probability of encountering the system in certain

states, such as empty, p0 = P (L = 0), having all server busy, P (L ≥ c), having more than a

certain number of customers, say n, P (L > n) = 1−
∑n−1

i=0 πi, or of a customer having to wait
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more than a certain time x in queue, P (Wq > x).

Tail probabilities such as the probability of encountering more than n customers in queue,

P (L > n) = 1−
n−1∑
i=0

πi, (3)

can translate the probability of a supermarket being too crowded, provided we consider that the

system is crowded with more than n customers waiting in queue at a certain checkout counter.

The πn’s can be obtained by solving recursion equations with initial value π0 corresponding to

the fraction of time the system (checkout) is empty.

Due to the lack of useful information for estimating the correct checkout queues parameters

estimated, to provide an possible/effective performance analysis of traditional checkout queues

we shall make use of prior information in [8] about expected time of payment, given payment is

either by card or cash. In his work, Horst (2009)[8], claims that paying cash takes on average

19 seconds while card payments linger to 26 seconds on average. This claim is supported on

a report by the De Nederlandesche Bank. We shall borough strength from these estimates to

obtain an estimate for the proportion of transactions using cash. Since SONAE claims that a

payment takes on average 20 seconds, regardless of the payment method, we then set q = 6/7,

i.e., approximately 86% of the transactions in Vasco da Gama store are cash transactions.

Adopting the estimated value of 110.6 seconds for the average time needed to scan the articles

in a traditional checkout, we obtain that µcs = 1/(110.6 + 19) and µcr = 1/(110.6 + 26), whence

E[S] = 130.6 and E[S2] = 34124.72. Note that these are all estimates despite we are using the

same notation for their theoretical counterparts.

At this point, it is worthy to note that, with respect to traditional checkout, customers seem

to prefer the checkout positions nearby the railway station plus the one next to the entrance

of Vasco da Gama store (cf. Figure 3). Due to their high preference, these 9 traditional

checkout counters are called type 1 systems. Traditional checkout systems belonging to the

complementary checkout region are designated by type 2 systems. We also note that we do

not know the percentage of time these positions are operative during a day’s work but we are

assuming the system on a steady-state regime anyway. Figure 4 displays the average number
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of customers in the queue, E[Lq], and the expected sojourn time, E[W ], for several values of

probability of preference assigned to type 1 (traditional) checkouts. In mean terms, if there are

at most 250 customers arriving the checkout area per hour, we should expect to find less than

three customers queueing in, even if 75% of customers choose counters of type 1. Given the

same conditions, i.e., λ = 250 and p? = 3/4, the expected sojourn time is at most 6.75 minutes.

With more than 300 customers per hour, with a demand of 75% for type 1 checkouts, both these

quantities tend to disrupt, an indicator that the system is near saturation.

We now turn to the analysis of self-checkout systems, characterized by (M/G/c), with c = 4.

The fact that we have now multiple service channels is an impending problem of practical im-

portance since it entails we are constrained to the departure time instants. The ulterior mathe-

matical reason why it is difficult to derive the necessary results is connected to the impossibility

of using imbedded Markov chains as in the previous (M/G/1) queueing systems. The study of a

(M/G/c) system reduces to the study of the queue behavior. Hence, calculations are confined to

the average queue length at departure points. Although Little’s formula still applies, the average

number of customers in the queue, at the departure of a predecessor customer from the service,

entails knowledge about the probability of n customers in queue just after departure. Knowing

such queueing probabilities is virtually impossible from SONAE’s data records. As a matter of

fact, we encounter a similar difficulty with a (M/G/1) system (for traditional checkouts) if we

want to carry on with the calculation of probability (3) for specific values of n because it depends

on πn’s, which in turn, depend on the number of customers who arrive during a service time

interval. To circumvent this difficulty, we shall reduce our service time to a two-point discrete

random variable S such that P{S = 129.6} = 6/7 and P{S = 136.6} = 1/7, thus yielding

overall average service time E[S] = 130.6 and associated second moment E[S2] = 17062.37. The

underlying assumption is that the servers are so sharp now that the service rate µcs (resp. µcr)

is not an average rate but an exact (deterministic) number µcs = 1/129.6 (resp. µcr = 1/136.6).

Such an assumption upon the service times (with only two possible times of 129.6 seconds for

cash payments and 136.6 for card payments) has severe implications because it clearly imposes

constraints upon the number of items customers wish to buy. Nevertheless, the dichotomy of

service times fixes the problem of not knowing the number of customers arriving at departure

18



74th ESGI 3 PERFORMANCE MEASURES

0

2.25

4.5

6.75

9

50 100 150 200 250 300

Average queue lenght for type 1 checkouts

Lq(3/4) Lq (3/5) Lq(1/2)

0

375

750

1,125

1,500

50 100 150 200 250 300

Average sojourn time (in seconds)

W(3/4) W (3/5) W(1/2)

Figure 4: Performance measures for a counter of type 1, plotted against the arrival rate λ = 50(50)300
customers by the hour.
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times and we find (cf. [7], Example 5.3):

P{L > 3} = P{at least 3 customers in queue}

= 1− π0 − π1 − π2 − π3

= 1− p0 − p1 − p2 − p3

= 1− (1− ρ)
{ 1

c0
− 1 +

(1− c1
c0

− 1
) 1

c0
+

1

c0

[1− c1
c0

(1− c1
c0

− 1
)
− c2

2c0

]}
,

where

cj =
6

7
exp
{
− λi
µcs

}( λi
µcs

)j
+

1

7
exp
{
− λi
µcr

}( λi
µcr

)j
, i = 1, 2, . . . , k1, j = 0, 1, 2.

In Figure 5 we depict the probability of a queue with more than two customers in a traditional

checkout system of type 1. Two different values of preference probability are chosen, 3/4 and

1/2, the latter corresponding to the situation where a customer virtually throws a coin in order

to decide which checkout region to use (between type 1 and type 2 regions). In this case, even

if there is arriving customers at the rate of 300 per hour, 8 traditional checkout servers would

suffice to keep below 10% the probability of encountering more than 2 customers in queue.

Let us now consider the case in which a customer decides for a type 1 region with probability

3/4. An arrival rate of 200 customers per hour requires at least 8 servers to ensure the probability

of finding more than 2 customers queueing in a type 1 system stays below 10%. On the other

hand, we should impose an upper limit for the number of type 1 serves. There are 36 traditional

checkout positions in the whole Vasco da Gama store. If the type 1 checkout region encompasses

more than 12, say, traditional servers, those servers not so close to the railway hand-side should

become less appealing. Hence, other subtypes of checkouts would be necessary.

Altogether, with the 3/4 probability assigned to the preference of customers for a type 1

region enclosing 10 traditional checkouts, the probability of finding more than 2 customers in

queue is below 0.3, even with an input traffic of 300 customers per hour.
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Figure 5: Probability of finding at least three customers queueing in a type I checkout counter for
different probability of choosing checkout region of type 1, all plotted against the number of traditional
checkout checkout servers, given the arrival rate λ = 50(50)300 customers by the hour.
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4 Conclusions and recommendations

Long waiting time for checkout may cause customers discomfort and bewilderment. Customers

really want fast checkout at supermarkets (see [8], p. 6), while retailers face the need to provide

successful shopping experiences. One way to fulfill this purpose consists on placing the so-called

self-checkout systems, thus creating a sensible alternative for those customers carrying baskets

and shopping only a few items, usually less than 5 items (as mentioned above). Self-checkout

counters should in fact provide a convenient and appealing way out of the supermarket for light

shopping. Therefore a trade-off that has to be made. If by the one hand, communal queues give

every customer their fair turn at the self-checkouts so they do not wait a moment longer than

is fair every time they shop (and with this, the stress of making the wrong choice and paying

for it is eliminated), by the other hand, when cost of waiting and do-it-yourself implies the cost

of losing a customer (because long waiting time drives the customer away), then measurement

becomes more difficult, rendering store management a more complicated task.

An alternative way to manage the queueing system by measuring, analyzing and minimizing

its combined total costs, the supermarkets may try to manage the service system by setting

threshold parameters for system operating characteristics, and then use faster servers, more

servers, automation of the service activity or some combination of strategies to achieve those

parameters for store crowdiness.

For example, a consumer products store may decide to open another cash register checkout

station when the mean number of customers in line at the first five registers goes, say, over

three; or consider the supermarket as too crowded if the probability of more than 3 customers

in a queue is greater than 0.05.

This work is an attempt to modeling the store front configuration for one particular store of

SONAE’s group: the Vasco da Gama store. There is a total of 40 checkout servers available in

this store, 4 of which are self-checkout counters attached to a single queueing line. In principle,

all self-checkout servers remain operative for the entire period of the day the store is open.

Our starting point is the modeling of a checkout area by Horst (2009) [8] regarding the

random split of the arrival process to the checkout area into k Poisson subprocesses underlying

the arrivals at each checkout system (or counter). Motivated by the most striking feature in
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Figure 3 that customers are more inclined to proceed to those checkout systems closely located

to the railway station, also near to the car parking sites, we have considered two specific regions,

assigned with specific probability of preference. This is our main contribution to the application

of queueing theory for analyzing the problem of congestion in supermarket checkouts. We are

particularly concerned with modeling the average waiting time of a customer in queue, viewed

as an important component of the user service. Due to sparsity of information, in the sense that

we do not have any data available for the (single) queue attached to each server (traditional or

self-checkout), we were forced to reduce our approach to the case of determinist service rates.

Bearing our primary assumption in mind, that the number of customers in queue depends on

the time a precedent customer has already spent in the server, the latter was found the most

fruitful approach.

The amount of time a customer spends in the server or checkout counter strongly depends on

the method of payment, namely cash or card. The latest balance of the De Nederlandesche Bank

gives 19 seconds for the mean duration of cash payments, whereas card payments can rise up to

26 seconds on average. On account of simplicity, other methods of payment were disregarded in

the current analysis. Furthermore, we have considered traditional checkouts are mutually inde-

pendent and are allocated within two regions of preference, according to their spatial positions

in the Vasco da Gama store front. The so-called type 1 region encloses traditional checkout

systems on the nearest end to the railway station and the one adjacent to the entrance in the

supermarket (see Figure 3). If there are 75% customers going for the type 1 region then sojourn

time in the checkout area is approximately 6.75 minutes with an input stream of 250 customers

per hour, and rising up to 21.24 minutes, approximately, when instilling 300 customers per hour

(on average), given all k1 = 9 type 1 traditional checkouts are operative. This is the sort of

information displayed in Figure 4. Furthermore, Figure 5 shows that, at a rate of 250 customers

arriving the checkout area per hour, the probability of finding at least 3 customers in queue

already surpasses 15% with 9 type 1 checkouts being operative for some time.

It is worthwhile to mention at this point that these results are somewhat uninformative

because they follow from a deterministic setup, carried by the replacement of averages by exact

equalities. What we are actually saying is that a randomly chosen customer takes exactly 19
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seconds paying cash, instead of saying a randomly chosen customer is expected to take 19 seconds

if paying in cash. The use of such a straightforward approach is the main reason why we have

not studied more thoroughly the somewhat similar case of self-service checkouts.

Taking all into consideration, subsequent enhancement of the present results depend on the

monitoring of queue behavior. Moreover, it is crucial to discern and identify stable periods of

the whole system (store front or checkout area), providing a more accurate estimation of service

rates. This involves record of time values useful to pinpoint time intervals during which the

checkout counters are actually operative. Having a grasp at the percentage of cash payments

at Vasco da Gama, as well as the percentage of customers moving towards type 1 traditional

checkouts and percentage of customers going for self-checkout servers, would improve the current

results. Valuable information in the present framework is the number of arrivals during any inter-

departure period. Having this sort of information available would avoid the ultimate reduction

to (M/D/c) systems that encapsulate deterministic service times.
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